Exercise 27

If $f(x)=3 x^{2}-x^{3}$, find $f^{\prime}(1)$ and use it to find an equation of the tangent line to the curve $y=3 x^{2}-x^{3}$ at the point $(1,2)$.

Solution

Determine the derivative of $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}-(x+h)^{3}\right]-\left[3 x^{2}-x^{3}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3\left(x^{2}+2 x h+h^{2}\right)-\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)\right]-3 x^{2}+x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3 x^{2}+6 x h+3 h^{2}-x^{3}-3 x^{2} h-3 x h^{2}-h^{3}\right)-3 x^{2}+x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}-3 x^{2} h-3 x h^{2}-h^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(6 x+3 h-3 x^{2}-3 x h-h^{2}\right) \\
& =6 x-3 x^{2}
\end{aligned}
$$

Plug in $x=1$ to this formula to get $f^{\prime}(1)$.

$$
f^{\prime}(1)=6(1)-3(1)^{2}=6-3=3
$$

This is the slope of the tangent line to the curve at $x=1$. Use the point-slope formula and the provided point $(1,2)$ to get the equation of this line.

$$
\begin{gathered}
y-2=3(x-1) \\
y-2=3 x-3 \\
y=3 x-1
\end{gathered}
$$

Below is a graph of the curve along with the tangent line at $x=1$.

